metal-organic papers

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Yao-Cheng Shi,* Chun-Xia Sui and Jin-Juan Wu

130 XiMenWai Street, School of Chemistry, Yangzhou University, Yangzhou 225002, People's Republic of China

Correspondence e-mail: yzssyc@yzcn.net

Kev indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.012 Å R factor = 0.044 wR factor = 0.121 Data-to-parameter ratio = 8.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

(S)-3-[(1-Ethoxycarbonyl-2-phenylethyl)amino]-1-ferrocenylbut-2-en-1-one

The title compound {systematic name: (S)-ethyl 2-[1-(1ferrocenylcarbonyl)prop-1-en-2-ylamino]-3-phenylpropionate}, [Fe(C₅H₅)(C₂₀H₂₂NO₃)], has been synthesized by the reaction of ferrocenoylacetone with ethyl L-phenylalanine in ethanol. The two nearly parallel cyclopentadienyl rings in the ferrocenyl moiety adopt an eclipsed conformation.

Received 20 July 2005 Accepted 24 August 2005 Online 31 August 2005

Comment

Enaminones are important ligands in coordination chemistry (Li et al., 2004; Kim et al., 2001; Doherty et al., 1999) and important chiral auxiliaries in organic synthesis (Christoffers, 2003). In continuation of our investigation of the chemistry of ferrocenyl enaminones (Shi, Sui & Cheng, 2005; Shi, Sui et al., 2005), the title compound, (I), has been prepared by the reaction of ferrocenoylacetone and L-phenylalanine ethyl ester in an ethanol solution.

The molecular structure of (I) is shown in Fig. 1. The bond distances (Table 1) within the O = C - C = C - N system show electron delocalization (Gilli et al., 2000). The dihedral angle

Figure 1

The molecular structure of (I), with 30% probability displacement © 2005 International Union of Crystallography ellipsoids (arbitrary spheres for H atoms). The double dashed line indicates the intramolecular hydrogen bond.

Printed in Great Britain - all rights reserved

between the O=C-C=C-N plane and the substituted cyclopentadienyl ring is 7.7 (4)°. The C9-C34 bond distance suggests a single bond. The two nearly parallel cyclopentadienyl rings in the ferrocenyl moiety adopt an eclipsed conformation.

Classical N-H···O intramolecular hydrogen bonds and weak intermolecular C-H···O hydrogen bonds are observed in the crystal structure of (I) (Table 2).

Experimental

The title compound was synthesized by refluxing a solution of ferrocenoylacetone and L-phenylalanine ethyl ester in a 1:1 molar ratio for 4 h in an ethanol solution. After removal of the solvent, the resulting residue was chromatographed on a silica-gel column using CH_2Cl_2 -ethanol (20:1, v/v) as eluent. The red band was collected and further recrystallized from CH₂Cl₂-petroleum ether (1:2 v/v) to afford the title compound (32% yield, m.p. 357-358 K). Analysis, calculated for C₂₅H₂₇FeNO₃: C 67.43, H 6.11, N 3.15%; found: C 67.45, H 6.35, N 3.06%. Spectroscopic analysis: IR (KBr, ν , cm⁻¹): 3117 (br, w, NH), 1739 (s, O=COEt), 1601 (vs, O=C), 1567 (m, C=C); UV (λ_{max} , nm, in DMF): 336.50 (K-band, 1.35 × 10⁴), 455.00 (CT-band, 0.071×10^4); ¹H NMR (600 MHz, CDCl₃, δ , p.p.m.): 11.23 (1H, s, NH), 7.23–7.31 (5H, m, C₆H₅), 5.21 (1H, s, CH), 4.76, 4.71, 4.37 (4H, s, C₅H₄), 4.31 (1H, m, CHN), 4.19–4.23 (2H, q, ${}^{3}J = 5.4$ Hz, OCH₂), 4.16 (5H, s, C₅H₅), 3.21-3.24, 3.00-3.04 (2H, 2q, CH₂Ph), 1.68 $(3H, s, CH_3), 1.24-1.27 (3H, t, {}^{3}J = 5.4 Hz, CH_3).$

Crystal data

 $[Fe(C_{3}H_{5})(C_{20}H_{22}NO_{3})]$ $M_{r} = 445.33$ Monoclinic, P2₁ a = 10.029 (2) Å b = 7.4860 (15) Å c = 15.608 (3) Å $\beta = 100.26$ (3)° V = 1153.1 (4) Å³ Z = 2

Data collection

Enraf-Nonius CAD-4 diffractometer $\omega/2\theta$ scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{\min} = 0.827, T_{\max} = 0.923$ 2543 measured reflections 2407 independent reflections 1770 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.121$ S = 1.042407 reflections 273 parameters H-atom parameters constrained $D_x = 1.283 \text{ Mg m}^{-3}$ Mo K α radiation Cell parameters from 25 reflections $\theta = 10-13^{\circ}$ $\mu = 0.68 \text{ mm}^{-1}$ T = 293 KBlock, red $0.3 \times 0.2 \times 0.1 \text{ mm}$

 $R_{int} = 0.026$ $\theta_{max} = 26.0^{\circ}$ $h = 0 \rightarrow 11$ $k = 0 \rightarrow 8$ $l = -18 \rightarrow 18$ 3 standard reflections every 200 reflections intensity decay: 0.1%

$$\begin{split} w &= 1/[\sigma^2(F_{\rm o}^2) + (0.061P)^2 \\ &+ 0.3415P] \\ {\rm where} \ P &= (F_{\rm o}^2 + 2F_{\rm c}^2)/3 \\ (\Delta/\sigma)_{\rm max} < 0.001 \\ \Delta\rho_{\rm max} &= 0.39 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta\rho_{\rm min} &= -0.24 \ {\rm e} \ {\rm \AA}^{-3} \end{split}$$

Table 1

Selected geometric parameters (Å).

O1-C2	1.438 (9)	N-C7	1.340 (9)
O1-C3	1.320 (9)	C7-C8	1.371 (10)
O2-C3	1.180 (10)	C8-C9	1.433 (9)
03-C9	1.245 (8)	C9-C34	1.484 (9)
N-C5	1.435 (9)		

Table 2			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N-H1N···O3	0.86	1.97	2.655 (8)	135
$C2 - H2B \cdots O3^{i}$	0.97	2.58	3.472 (14)	152
	1			

Symmetry code: (i) $-x + 1, y + \frac{1}{2}, -z$.

The absolute configuration of (I) was assigned by reference to an unchanging chiral centre for L-phenylalanine ethyl ester in the synthetic procedure. Methyl H atoms were placed in calculated positions, with C-H = 0.96 Å and torsion angles refined from electron density, with $U_{iso}(H) = 1.5U_{eq}(C)$. Other H atoms were placed in geometrically idealized positions, with C-H = 0.93-0.98 Å and N-H = 0.86 Å, and refined in riding mode, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *CAD-4 Software*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *PLATON* (Spek, 2003) and *OSCAIL-X* (McArdle, 1995).

The authors thank the Innovative Funds of Yangzhou University for financial support.

References

- Christoffers, J. (2003). Chem. Eur. J. 9, 4862-4867.
- Doherty, S., Errington, R. J., Housley, N., Ridland, J., Clegg, W. & Elsegood, M. R. J. (1999). Organometallics, 18, 1018-1029.
- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

- Gilli, P., Bertolasi, V., Ferretti, V. & Gilli, G. (2000). J. Am. Chem. Soc. 122, 10405–10412.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Kim, J., Hwang, J. W., Kim, Y., Lee, M. H., Han, Y. & Do, Y. (2001). J. Organomet. Chem. 620, 1–7.
- Li, X.-F. Dai, K., Ye, W.-P., Pan, L. & Li, Y.-S. (2004). Organometallics, 23, 1223–1230.

McArdle, P. (1995). J. Appl. Cryst. 28, 65.

- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Shi, Y.-C., Sui, C.-X. & Cheng, H.-J. (2005). Acta Cryst. E61, m1563-m1565.
- Shi, Y.-C., Sui, C.-X., Song, H.-B. & Jian, P.-M. (2005). J. Coord. Chem. 58, 363– 371.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.